Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 24

Answer

0

Work Step by Step

We find: \begin{array}{c} x=r \cos \theta, \quad y=r \sin \theta \\ r^{2}=x^{2}+y^{2} \\ (x, y) \rightarrow(0,0) \quad \Rightarrow r \rightarrow 0+ \\ y \ln \left(x^{2}+y^{2}\right)=r \sin \theta \ln r^{2}=2 r(\ln r) \sin \theta \\ \lim _{(x, y) \rightarrow(0,0)} y \ln \left(x^{2}+y^{2}\right)=\lim _{r \rightarrow 0+} 2 r(\ln r) \sin \theta=2 \sin \theta\left[\lim _{r \rightarrow 0+} r(\ln r)\right]=\ldots \\ \lim _{r \rightarrow 0+} r(\ln r)=\lim _{r \rightarrow 0+} \frac{\ln r}{\frac{1}{r}}=\left(\mathrm{L}^{\prime} \mathrm{H}, \frac{\infty}{\infty}\right)=\lim _{r \rightarrow 0+} \frac{\frac{1}{r}}{-\frac{1}{r^{2}}}=\lim _{r \rightarrow 0+}-r=0 \end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.