Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 12

Answer

0

Work Step by Step

We are given that $z=y^{2}+x^{2}$ and find the $\operatorname{limit}$: \[ \lim _{(x, y) \rightarrow(0,0)} \frac{e^{-1 / \sqrt{y^{2}+x^{2} }}}{\sqrt{y^{2}+x^{2} }} \] Given that if $(x, y) \rightarrow(0,0)$, then $z \rightarrow 0^{+}$, so we re-write the equation: \[ \begin{array}{l} =\lim _{z \rightarrow 0^{+}} \frac{e^{-1 / \sqrt{z}}}{\sqrt{z}} \quad \text { let } \frac{1}{\sqrt{z}}=u \\ =\lim _{u \rightarrow \infty} \frac{u}{e^{u}} \quad \text { because } z \rightarrow 0^{+} \text {So } u \rightarrow \infty \\ =0 \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.