Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.1 Algebra Essentials - A.1 Assess Your Understanding - Page A12: 106

Answer

$ \frac{216x^{6}}{125y^{6}}$.

Work Step by Step

The given expression is $=\left ( \frac{5x^{-2}}{6y^{-2}} \right )^{-3}$ Use the law of exponents $(\frac{a}{b})^n=\frac{a^{n}}{ b^n}$ $= \frac{(5x^{-2})^{-3}}{(6y^{-2})^{-3}}$ Use the law of exponents $(ab)^n=a^{n} b^n$ $= \frac{(5)^{-3}(x^{-2})^{-3}}{(6)^{-3}(y^{-2})^{-3}}$ Use the law of exponents $(a^m)^n=a^{m\cdot n}$ $= \frac{5^{-3}x^{-2\cdot-3}}{6^{-3}y^{-2\cdot -3}}$ Simplify. $= \frac{5^{-3}x^{6}}{6^{-3}y^{6}}$ Use the law of exponents $a^{-n}=\frac{1}{a^{n}}$ $= \frac{6^{3}x^{6}}{5^{3}y^{6}}$ Use $6^3=216$ and $5^3=125$. $= \frac{216x^{6}}{125y^{6}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.