Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.1 Algebra Essentials - A.1 Assess Your Understanding - Page A12: 105

Answer

$ \frac{16x^{2}}{9y^{2}}$.

Work Step by Step

The given expression is $=\left ( \frac{3x^{-1}}{4y^{-1}} \right )^{-2}$ Use the law of exponents $(\frac{a}{b})^n=\frac{a^{n}}{ b^n}$ $= \frac{(3x^{-1})^{-2}}{(4y^{-1})^{-2}}$ Use the law of exponents $(ab)^n=a^{n} b^n$ $= \frac{(3)^{-2}(x^{-1})^{-2}}{(4)^{-2}(y^{-1})^{-2}}$ Use the law of exponents $(a^m)^n=a^{m\cdot n}$ $= \frac{3^{-2}x^{-1\cdot-2}}{4^{-2}y^{-1\cdot -2}}$ Simplify. $= \frac{3^{-2}x^{2}}{4^{-2}y^{2}}$ Use the law of exponents $a^{-n}=\frac{1}{a^{n}}$ $= \frac{4^{2}x^{2}}{3^{2}y^{2}}$ Use $4^=16$ and $3^2=9$. $= \frac{16x^{2}}{9y^{2}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.