Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 7

Answer

$\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \frac{1}{2}{\pi ^2}$

Work Step by Step

We have ${\bf{F}}\left( {x,y,z} \right) = \left( {x,y,z} \right)$ and ${\bf{r}}\left( t \right) = \left( {\cos t,\sin t,t} \right)$ for $0 \le t \le \pi $. So, ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {\cos t,\sin t,t} \right)$ $d{\bf{r}} = {\bf{r}}'\left( t \right)dt$ $d{\bf{r}} = \left( { - \sin t,\cos t,1} \right)dt$ Evaluate the dot product ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right)$: ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right) = \left( {\cos t,\sin t,t} \right)\cdot\left( { - \sin t,\cos t,1} \right) = t$ Evaluate $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}}$ using Eq. (8): $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_a^b {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $ = \mathop \smallint \limits_0^\pi t{\rm{d}}t = \frac{1}{2}{t^2}|_0^\pi = \frac{1}{2}{\pi ^2}$ So, $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \frac{1}{2}{\pi ^2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.