Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 34

Answer

$\mathop \smallint \limits_C^{} \left( {{{\rm{e}}^{x - y}},{{\rm{e}}^{x + y}}} \right)\cdot{\rm{d}}{\bf{r}} \simeq - 4.5088$

Work Step by Step

Write the vector field ${\bf{F}}\left( {x,y} \right) = \left( {{{\rm{e}}^{x - y}},{{\rm{e}}^{x + y}}} \right)$ and the path ${\bf{r}} = \left( {x,y} \right)$, such that $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_C^{} \left( {{{\rm{e}}^{x - y}},{{\rm{e}}^{x + y}}} \right)\cdot{\rm{d}}{\bf{r}}$ The curve can be parametrized by ${\bf{r}}\left( t \right) = \left( {t,\sin t} \right)$ for $0 \le t \le \pi $. So, ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {{{\rm{e}}^{t - \sin t}},{{\rm{e}}^{t + \sin t}}} \right)$ $d{\bf{r}} = {\bf{r}}'\left( t \right)dt$ $d{\bf{r}} = \left( {1,\cos t} \right)dt$ Using Eq. (8), the vector line integral becomes $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_C^{} \left( {{{\rm{e}}^{x - y}},{{\rm{e}}^{x + y}}} \right)\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_0^2 {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} \left( {{{\rm{e}}^{x - y}},{{\rm{e}}^{x + y}}} \right)\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_0^\pi \left( {{{\rm{e}}^{t - \sin t}},{{\rm{e}}^{t + \sin t}}} \right)\cdot\left( {1,\cos t} \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} \left( {{{\rm{e}}^{x - y}},{{\rm{e}}^{x + y}}} \right)\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_0^\pi \left( {{{\rm{e}}^{t - \sin t}} + {{\rm{e}}^{t + \sin t}}\cos t} \right){\rm{d}}t$ Using a computer algebra system, we compute the integral and the result is $\mathop \smallint \limits_0^\pi \left( {{{\rm{e}}^{t - \sin t}} + {{\rm{e}}^{t + \sin t}}\cos t} \right){\rm{d}}t \simeq - 4.5088$ So, $\mathop \smallint \limits_C^{} \left( {{{\rm{e}}^{x - y}},{{\rm{e}}^{x + y}}} \right)\cdot{\rm{d}}{\bf{r}} \simeq - 4.5088$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.