Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 30

Answer

$\mathop \smallint \limits_C^{} z{\rm{d}}x + {x^2}{\rm{d}}y + y{\rm{d}}z = \frac{\pi }{8}\sqrt 2 - \frac{1}{2}\sqrt 2 + \frac{\pi }{4} + \frac{1}{2}\ln 2$

Work Step by Step

Write the vector field ${\bf{F}}\left( {x,y,z} \right) = \left( {z,{x^2},y} \right)$ and the path ${\bf{r}} = \left( {x,y,z} \right)$, such that $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_C^{} z{\rm{d}}x + {x^2}{\rm{d}}y + y{\rm{d}}z$ The path is given by ${\bf{r}}\left( t \right) = \left( {\cos t,\tan t,t} \right)$ for $0 \le t \le \frac{\pi }{4}$. So, ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {t,{{\cos }^2}t,\tan t} \right)$ $d{\bf{r}} = {\bf{r}}'\left( t \right)dt$ $d{\bf{r}} = \left( { - \sin t,{{\sec }^2}t,1} \right)dt$ Using Eq. (8), the vector line integral becomes $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_C^{} z{\rm{d}}x + {x^2}{\rm{d}}y + y{\rm{d}}z = \mathop \smallint \limits_0^{\pi /4} {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} z{\rm{d}}x + {x^2}{\rm{d}}y + y{\rm{d}}z = \mathop \smallint \limits_0^{\pi /4} \left( {t,{{\cos }^2}t,\tan t} \right)\cdot\left( { - \sin t,{{\sec }^2}t,1} \right){\rm{d}}t$ $ = \mathop \smallint \limits_0^{\pi /4} \left( { - t\sin t + 1 + \tan t} \right){\rm{d}}t$ (1) ${\ \ \ \ \ }$ $\mathop \smallint \limits_C^{} z{\rm{d}}x + {x^2}{\rm{d}}y + y{\rm{d}}z = - \mathop \smallint \limits_0^{\pi /4} t\sin t{\rm{d}}t + \mathop \smallint \limits_0^{\pi /4} {\rm{d}}t + \mathop \smallint \limits_0^{\pi /4} \tan t{\rm{d}}t$ 1. Evaluate $ - \mathop \smallint \limits_0^{\pi /4} t\sin t{\rm{d}}t$ Write $u = t$, $dv = \sin tdt$. So, $du = dt$, $v = - \cos t$. Using Integration by Parts Formula (Section 8.1): $\smallint u{\rm{d}}v = uv - \smallint v{\rm{d}}u$ we get $ - \mathop \smallint \limits_0^{\pi /4} t\sin t{\rm{d}}t = - \left( { - t\cos t|_0^{\pi /4} + \mathop \smallint \limits_0^{\pi /4} \cos t{\rm{d}}t} \right)$ $ = - \left( { - \frac{\pi }{4}\cdot\frac{1}{2}\sqrt 2 + \sin t|_0^{\pi /4}} \right)$ $ = \frac{\pi }{8}\sqrt 2 - \frac{1}{2}\sqrt 2 $ 2. Using the result in Example 6 of Section 8.2, we obtain $\mathop \smallint \limits_0^{\pi /4} \tan x{\rm{d}}x = \left( {\ln \left| {\sec x} \right|} \right)|_0^{\pi /4}$ $ = \ln \left( {\frac{1}{2}\sqrt 2 } \right) = \ln \sqrt 2 - \ln 2$ $ = \frac{1}{2}\ln 2$ Substituting these results back in equation (1) gives $\mathop \smallint \limits_C^{} z{\rm{d}}x + {x^2}{\rm{d}}y + y{\rm{d}}z = - \mathop \smallint \limits_0^{\pi /4} t\sin t{\rm{d}}t + \mathop \smallint \limits_0^{\pi /4} {\rm{d}}t + \mathop \smallint \limits_0^{\pi /4} \tan t{\rm{d}}t$ $ = \frac{\pi }{8}\sqrt 2 - \frac{1}{2}\sqrt 2 + \frac{\pi }{4} + \frac{1}{2}\ln 2$ So, $\mathop \smallint \limits_C^{} z{\rm{d}}x + {x^2}{\rm{d}}y + y{\rm{d}}z = \frac{\pi }{8}\sqrt 2 - \frac{1}{2}\sqrt 2 + \frac{\pi }{4} + \frac{1}{2}\ln 2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.