Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 31

Answer

$\mathop \smallint \limits_C^{} \frac{{ - y{\rm{d}}x + x{\rm{d}}y}}{{{x^2} + {y^2}}} = \frac{\pi }{2}$

Work Step by Step

Write the vector field ${\bf{F}}\left( {x,y} \right) = \left( {\frac{{ - y}}{{{x^2} + {y^2}}},\frac{x}{{{x^2} + {y^2}}}} \right)$ and the path ${\bf{r}} = \left( {x,y} \right)$, such that $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_C^{} \frac{{ - y{\rm{d}}x + x{\rm{d}}y}}{{{x^2} + {y^2}}}$ The segment from $\left( {1,0} \right)$ to $\left( {0,1} \right)$ can be parametrized by ${\bf{r}}\left( t \right) = \left( {1,0} \right) + t\left( {\left( {0,1} \right) - \left( {1,0} \right)} \right)$, ${\ \ \ }$ for $0 \le t \le 1$ ${\bf{r}}\left( t \right) = \left( { - t + 1,t} \right)$ So, ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {\frac{{ - t}}{{{{\left( { - t + 1} \right)}^2} + {t^2}}},\frac{{ - t + 1}}{{{{\left( { - t + 1} \right)}^2} + {t^2}}}} \right)$ $d{\bf{r}} = {\bf{r}}'\left( t \right)dt$ $d{\bf{r}} = \left( { - 1,1} \right)dt$ Using Eq. (8), the vector line integral becomes $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_C^{} \frac{{ - y{\rm{d}}x + x{\rm{d}}y}}{{{x^2} + {y^2}}} = \mathop \smallint \limits_0^1 \left( {\frac{{ - t}}{{{{\left( { - t + 1} \right)}^2} + {t^2}}},\frac{{ - t + 1}}{{{{\left( { - t + 1} \right)}^2} + {t^2}}}} \right)\cdot\left( { - 1,1} \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} \frac{{ - y{\rm{d}}x + x{\rm{d}}y}}{{{x^2} + {y^2}}} = \mathop \smallint \limits_0^1 \left( {\frac{t}{{{{\left( { - t + 1} \right)}^2} + {t^2}}} + \frac{{ - t + 1}}{{{{\left( { - t + 1} \right)}^2} + {t^2}}}} \right){\rm{d}}t$ $ = \mathop \smallint \limits_0^1 \frac{1}{{{{\left( { - t + 1} \right)}^2} + {t^2}}}{\rm{d}}t$ The integral above gives $\mathop \smallint \limits_C^{} \frac{{ - y{\rm{d}}x + x{\rm{d}}y}}{{{x^2} + {y^2}}} = \mathop \smallint \limits_0^1 \frac{1}{{2{t^2} - 2t + 1}}{\rm{d}}t$ Re-write the integral at the right-hand side as $\mathop \smallint \limits_C^{} \frac{{ - y{\rm{d}}x + x{\rm{d}}y}}{{{x^2} + {y^2}}} = \mathop \smallint \limits_0^1 \frac{2}{{4{t^2} - 4t + 2}}{\rm{d}}t$ $\mathop \smallint \limits_C^{} \frac{{ - y{\rm{d}}x + x{\rm{d}}y}}{{{x^2} + {y^2}}} = 2\mathop \smallint \limits_0^1 \frac{1}{{{{\left( {2t - 1} \right)}^2} + 1}}{\rm{d}}t$ Let $u = 2t - 1$. So, $du = 2dt$. The integral becomes $\mathop \smallint \limits_C^{} \frac{{ - y{\rm{d}}x + x{\rm{d}}y}}{{{x^2} + {y^2}}} = \mathop \smallint \limits_{ - 1}^1 \frac{1}{{{u^2} + 1}}{\rm{d}}u$ By Theorem 2 of Section 7.8, we know that $\frac{d}{{dx}}{\tan ^{ - 1}} = \frac{1}{{{x^2} + 1}}$. Thus, we obtain $\mathop \smallint \limits_C^{} \frac{{ - y{\rm{d}}x + x{\rm{d}}y}}{{{x^2} + {y^2}}} = {\tan ^{ - 1}}u|_{ - 1}^1 = \frac{\pi }{4} - \left( { - \frac{\pi }{4}} \right) = \frac{\pi }{2}$ So, $\mathop \smallint \limits_C^{} \frac{{ - y{\rm{d}}x + x{\rm{d}}y}}{{{x^2} + {y^2}}} = \frac{\pi }{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.