Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 17

Answer

The integral $\mathop \smallint \limits_C^{} 1{\rm{d}}s$ represents the length of the line segment from the point $\left( {8, - 6,24} \right)$ to the point $\left( {20, - 15,60} \right)$.

Work Step by Step

We have the parametrization of the curve $C$ given by ${\bf{r}}\left( t \right) = \left( {4t, - 3t,12t} \right)$ for $2 \le t \le 5$. $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( {4, - 3,12} \right)\cdot\left( {4, - 3,12} \right)} = \sqrt {16 + 9 + 144} = \sqrt {169} = 13$ Using Eq. (4): $\mathop \smallint \limits_C^{} f\left( {x,y,z} \right){\rm{d}}s = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$ where in this case $f\left( {x,y,z} \right) = 1$, we get $\mathop \smallint \limits_C^{} 1{\rm{d}}s = 13\mathop \smallint \limits_2^5 {\rm{d}}t = 13\cdot\left( {5 - 2} \right) = 39$ The curve $C$ parametrized by ${\bf{r}}\left( t \right) = \left( {4t, - 3t,12t} \right)$ for $2 \le t \le 5$ is a line segment from the point $\left( {8, - 6,24} \right)$ to the point $\left( {20, - 15,60} \right)$. So, the integral $\mathop \smallint \limits_C^{} 1{\rm{d}}s$ represents the distance of these two points, or in other words the length of the line segment.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.