Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 19

Answer

$\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \frac{{16}}{3}$

Work Step by Step

We have the vector field ${\bf{F}}\left( {x,y} \right) = \left( {{x^2},xy} \right)$, and the line segment from $\left( {0,0} \right)$ to $\left( {2,2} \right)$. The line segment can be parametrized by ${\bf{r}}\left( t \right) = \left( {t,t} \right)$ for $0 \le t \le 2$. So, we obtain ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {{t^2},{t^2}} \right)$ $d{\bf{r}} = {\bf{r}}'\left( t \right)dt$ $d{\bf{r}} = \left( {1,1} \right)dt$ Evaluate the dot product ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right)dt$: ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right)dt = \left( {{t^2},{t^2}} \right)\cdot\left( {1,1} \right)dt = 2{t^2}dt$ Evaluate $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}}$ using Eq. (8): $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_a^b {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 2\mathop \smallint \limits_0^2 {t^2}{\rm{d}}t = \frac{2}{3}{t^3}|_0^2 = \frac{{16}}{3}$ So, $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \frac{{16}}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.