Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 3

Answer

(a) ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {{t^{ - 2}},{t^2}} \right)$ $d{\bf{r}} = \left( {1, - {t^{ - 2}}} \right)dt$ (b) ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right)dt = \left( {{t^{ - 2}} - 1} \right)dt$ $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = - \frac{1}{2}$

Work Step by Step

(a) We have ${\bf{F}} = \left( {{y^2},{x^2}} \right)$. Using the parametrization ${\bf{r}}\left( t \right) = \left( {t,{t^{ - 1}}} \right)$ for $1 \le t \le 2$, we obtain ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {{t^{ - 2}},{t^2}} \right)$ $d{\bf{r}} = {\bf{r}}'\left( t \right)dt$ $d{\bf{r}} = \left( {1, - {t^{ - 2}}} \right)dt$ (b) Evaluate the dot product ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right)dt$: ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right)dt = \left( {{t^{ - 2}},{t^2}} \right)\cdot\left( {1, - {t^{ - 2}}} \right)dt = \left( {{t^{ - 2}} - 1} \right)dt$ Evaluate $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}}$ using Eq. (8): $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_a^b {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $ = \mathop \smallint \limits_1^2 \left( {{t^{ - 2}} - 1} \right){\rm{d}}t = \left( { - {t^{ - 1}} - t} \right)|_1^2 = \left( { - \frac{1}{2} - 2 + 1 + 1} \right) = - \frac{1}{2}$ So, $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = - \frac{1}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.