Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 11

Answer

$\mathop \smallint \limits_C^{} {z^2}{\rm{d}}s = \frac{{128}}{3}\sqrt {29} $

Work Step by Step

We have $f\left( {x,y,z} \right) = {z^2}$ and the parametrization ${\bf{r}}\left( t \right) = \left( {2t,3t,4t} \right)$ for $0 \le t \le 2$. So, $f\left( {{\bf{r}}\left( t \right)} \right) = 16{t^2}$ $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( {2,3,4} \right)\cdot\left( {2,3,4} \right)} = \sqrt {4 + 9 + 16} = \sqrt {29} $ By Eq. (4): $\mathop \smallint \limits_C^{} f\left( {x,y,z} \right){\rm{d}}s = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$ $\mathop \smallint \limits_C^{} {z^2}{\rm{d}}s = 16\sqrt {29} \mathop \smallint \limits_0^2 {t^2}{\rm{d}}t = \frac{{16}}{3}\sqrt {29} {t^3}|_0^2 = \frac{{128}}{3}\sqrt {29} $ So, $\mathop \smallint \limits_C^{} {z^2}{\rm{d}}s = \frac{{128}}{3}\sqrt {29} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.