Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 12

Answer

$\mathop \smallint \limits_C^{} \left( {3x - 2y + z} \right){\rm{d}}s = - \frac{9}{2}\sqrt 6 $

Work Step by Step

We have $f\left( {x,y,z} \right) = 3x - 2y + z$ and the parametrization ${\bf{r}}\left( t \right) = \left( {2 + t,2 - t,2t} \right)$ for $ - 2 \le t \le 1$. So, $f\left( {{\bf{r}}\left( t \right)} \right) = 3\left( {2 + t} \right) - 2\left( {2 - t} \right) + 2t = 7t + 2$ $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( {1, - 1,2} \right)\cdot\left( {1, - 1,2} \right)} = \sqrt {1 + 1 + 4} = \sqrt 6 $ By Eq. (4): $\mathop \smallint \limits_C^{} f\left( {x,y,z} \right){\rm{d}}s = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$ $\mathop \smallint \limits_C^{} \left( {3x - 2y + z} \right){\rm{d}}s = \sqrt 6 \mathop \smallint \limits_{ - 2}^1 \left( {7t + 2} \right){\rm{d}}t = \sqrt 6 \left( {\left( {\frac{7}{2}{t^2} + 2t} \right)|_{ - 2}^1} \right)$ $ = \sqrt 6 \left( {\frac{7}{2} + 2 - 14 + 4} \right) = - \frac{9}{2}\sqrt 6 $ So, $\mathop \smallint \limits_C^{} \left( {3x - 2y + z} \right){\rm{d}}s = - \frac{9}{2}\sqrt 6 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.