Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 29

Answer

$\mathop \smallint \limits_C^{} \left( {x - y} \right){\rm{d}}x + \left( {y - z} \right){\rm{d}}y + z{\rm{d}}z = \frac{{13}}{2}$

Work Step by Step

Write the vector field ${\bf{F}}\left( {x,y,z} \right) = \left( {x - y,y - z,z} \right)$ and the path ${\bf{r}} = \left( {x,y,z} \right)$, such that $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_C^{} \left( {x - y} \right){\rm{d}}x + \left( {y - z} \right){\rm{d}}y + z{\rm{d}}z$ The line segment from $\left( {0,0,0} \right)$ to $\left( {1,4,4} \right)$ can be parametrized by ${\bf{r}}\left( t \right) = \left( {t,4t,4t} \right)$, ${\ \ \ }$ for $0 \le t \le 1$ So, ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( { - 3t,0,4t} \right)$ $d{\bf{r}} = {\bf{r}}'\left( t \right)dt$ $d{\bf{r}} = \left( {1,4,4} \right)dt$ Using Eq. (8), the vector line integral becomes $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_C^{} \left( {x - y} \right){\rm{d}}x + \left( {y - z} \right){\rm{d}}y + z{\rm{d}}z = \mathop \smallint \limits_0^1 {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} \left( {x - y} \right){\rm{d}}x + \left( {y - z} \right){\rm{d}}y + z{\rm{d}}z = \mathop \smallint \limits_0^1 \left( { - 3t,0,4t} \right)\cdot\left( {1,4,4} \right){\rm{d}}t$ $ = 13\mathop \smallint \limits_0^1 t{\rm{d}}t = \frac{{13}}{2}{t^2}|_0^1 = \frac{{13}}{2}$ So, $\mathop \smallint \limits_C^{} \left( {x - y} \right){\rm{d}}x + \left( {y - z} \right){\rm{d}}y + z{\rm{d}}z = \frac{{13}}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.