Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 23

Answer

$\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 2\left( {{{\rm{e}}^2} - {{\rm{e}}^{ - 2}}} \right) - \left( {{\rm{e}} - {{\rm{e}}^{ - 1}}} \right)$

Work Step by Step

We have the vector field ${\bf{F}}\left( {x,y} \right) = \left( {3z{y^{ - 1}},4x, - y} \right)$ and the parametrization ${\bf{r}}\left( t \right) = \left( {{{\rm{e}}^t},{{\rm{e}}^t},t} \right)$ for $ - 1 \le t \le 1$. So, we obtain ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {3t{{\rm{e}}^{ - t}},4{{\rm{e}}^t}, - {{\rm{e}}^t}} \right)$ $d{\bf{r}} = {\bf{r}}'\left( t \right)dt$ $d{\bf{r}} = \left( {{{\rm{e}}^t},{{\rm{e}}^t},1} \right)dt$ Evaluate the dot product ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right)dt$: ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right)dt = \left( {3t{{\rm{e}}^{ - t}},4{{\rm{e}}^t}, - {{\rm{e}}^t}} \right)\cdot\left( {{{\rm{e}}^t},{{\rm{e}}^t},1} \right)dt$ $ = \left( {3t + 4{{\rm{e}}^{2t}} - {{\rm{e}}^t}} \right)dt$ Evaluate $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}}$ using Eq. (8): $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_a^b {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_{ - 1}^1 \left( {3t + 4{{\rm{e}}^{2t}} - {{\rm{e}}^t}} \right){\rm{d}}t$ $ = \left( {\left( {\frac{3}{2}{t^2} + 2{{\rm{e}}^{2t}} - {{\rm{e}}^t}} \right)|_{ - 1}^1} \right) = \frac{3}{2} + 2{{\rm{e}}^2} - {\rm{e}} - \frac{3}{2} - 2{{\rm{e}}^{ - 2}} + {{\rm{e}}^{ - 1}}$ $ = 2{{\rm{e}}^2} - {\rm{e}} - 2{{\rm{e}}^{ - 2}} + {{\rm{e}}^{ - 1}} = 2\left( {{{\rm{e}}^2} - {{\rm{e}}^{ - 2}}} \right) - \left( {{\rm{e}} - {{\rm{e}}^{ - 1}}} \right)$ So, $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 2\left( {{{\rm{e}}^2} - {{\rm{e}}^{ - 2}}} \right) - \left( {{\rm{e}} - {{\rm{e}}^{ - 1}}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.