Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 24

Answer

$\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \frac{{2\pi }}{{{R^2}}}$

Work Step by Step

We have the vector field ${\bf{F}}\left( {x,y} \right) = \left( {\frac{{ - y}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}},\frac{x}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}} \right)$. The part of circle of radius $R$ with center at the origin, can be parametrized by ${\bf{r}}\left( t \right) = \left( {R\cos t,R\sin t} \right)$, ${\ \ \ }$ for $0 \le t \le \pi $ So, we obtain ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {\frac{{ - \sin t}}{{{R^3}}},\frac{{\cos t}}{{{R^3}}}} \right)$ $d{\bf{r}} = {\bf{r}}'\left( t \right)dt$ $d{\bf{r}} = \left( { - R\sin t,R\cos t} \right)dt$ Evaluate the dot product ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right)dt$: ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right)dt = \left( {\frac{{ - \sin t}}{{{R^3}}},\frac{{\cos t}}{{{R^3}}}} \right)\cdot\left( { - R\sin t,R\cos t} \right)dt$ $ = \left( {\frac{{{{\sin }^2}t}}{{{R^2}}} + \frac{{{{\cos }^2}t}}{{{R^2}}}} \right)dt$ $ = \frac{1}{{{R^2}}}dt$ Evaluate $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}}$ using Eq. (8): $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_a^b {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \frac{1}{{{R^2}}}\mathop \smallint \limits_0^{2\pi } {\rm{d}}t = \frac{{2\pi }}{{{R^2}}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.