Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 26

Answer

$\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \frac{8}{3}$

Work Step by Step

We have the vector field ${\bf{F}}\left( {x,y,z} \right) = \left( {{z^3},yz,x} \right)$. The circle in the $yz$-plane mentioned in this exercise can be parametrized by ${\bf{r}}\left( t \right) = \left( {0,2\cos t,2\sin t} \right)$, ${\ \ \ }$ for $0 \le t \le \frac{\pi }{2}$ So, we obtain ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {8{{\sin }^3}t,4\cos t\sin t,0} \right)$ $d{\bf{r}} = {\bf{r}}'\left( t \right)dt$ $d{\bf{r}} = \left( {0, - 2\sin t,2\cos t} \right)dt$ Evaluate the dot product ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right)dt$: ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right)dt = \left( {8{{\sin }^3}t,4\cos t\sin t,0} \right)\cdot\left( {0, - 2\sin t,2\cos t} \right)dt$ $ = - 8\cos t{\sin ^2}tdt$ Evaluate $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}}$ using Eq. (8): $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_a^b {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = - \mathop \smallint \limits_{\pi /2}^0 8\cos t{\sin ^2}t{\rm{d}}t$ $ = - 8\mathop \smallint \limits_{\pi /2}^0 {\sin ^2}t{\rm{d}}\left( {\sin t} \right)$ $ = - \frac{8}{3}\left( {{{\sin }^3}t|_{\pi /2}^0} \right) = \frac{8}{3}$ So, $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \frac{8}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.