Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 33

Answer

$\mathop \smallint \limits_C^{} {x^{ - 1}}yz{\rm{d}}s \simeq 339.5587$

Work Step by Step

We have $f\left( {x,y,z} \right) = {x^{ - 1}}yz$ and the curve $C$ parametrized by ${\bf{r}}\left( t \right) = \left( {\ln t,t,{t^2}} \right)$ for $2 \le t \le 4$. So, $f\left( {{\bf{r}}\left( t \right)} \right) = \frac{1}{{\ln t}}\cdot t\cdot{t^2} = \frac{{{t^3}}}{{\ln t}}$ $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( {\frac{1}{t},1,2t} \right)\cdot\left( {\frac{1}{t},1,2t} \right)} = \sqrt {\frac{1}{{{t^2}}} + 1 + 4{t^2}} $ By Eq. (4): $\mathop \smallint \limits_C^{} f\left( {x,y,z} \right){\rm{d}}s = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$ $\mathop \smallint \limits_C^{} {x^{ - 1}}yz{\rm{d}}s = \mathop \smallint \limits_2^4 \frac{{{t^3}}}{{\ln t}}\sqrt {\frac{1}{{{t^2}}} + 1 + 4{t^2}} {\rm{d}}t$ Using a computer algebra system, we compute the integral and the result is $\mathop \smallint \limits_2^4 \frac{{{t^3}}}{{\ln t}}\sqrt {\frac{1}{{{t^2}}} + 1 + 4{t^2}} {\rm{d}}t \simeq 339.5587$ So, $\mathop \smallint \limits_C^{} {x^{ - 1}}yz{\rm{d}}s \simeq 339.5587$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.