Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 27

Answer

$\mathop \smallint \limits_C^{} y{\rm{d}}x - x{\rm{d}}y = - \frac{8}{3}$

Work Step by Step

Write the vector field ${\bf{F}}\left( {x,y} \right) = \left( {y, - x} \right)$ and the path ${\bf{r}} = \left( {x,y} \right)$, such that $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_C^{} y{\rm{d}}x - x{\rm{d}}y$ The parabola can be parametrized by ${\bf{r}}\left( t \right) = \left( {t,{t^2}} \right)$ for $0 \le t \le 2$. So, ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {{t^2}, - t} \right)$ $d{\bf{r}} = {\bf{r}}'\left( t \right)dt$ $d{\bf{r}} = \left( {1,2t} \right)dt$ Using Eq. (8), the vector line integral becomes $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_C^{} y{\rm{d}}x - x{\rm{d}}y = \mathop \smallint \limits_0^2 {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} y{\rm{d}}x - x{\rm{d}}y = \mathop \smallint \limits_0^2 \left( {{t^2}, - t} \right)\cdot\left( {1,2t} \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} y{\rm{d}}x - x{\rm{d}}y = - \mathop \smallint \limits_0^2 {t^2}{\rm{d}}t = - \frac{1}{3}{t^3}|_0^2 = - \frac{8}{3}$ So, $\mathop \smallint \limits_C^{} y{\rm{d}}x - x{\rm{d}}y = - \frac{8}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.