Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 15

Answer

$\mathop \smallint \limits_C^{} \left( {2{x^2} + 8z} \right){\rm{d}}s = \frac{2}{3}\left( {{{\left( {{{\rm{e}}^2} + 5} \right)}^{3/2}} - 2\sqrt 2 } \right)$

Work Step by Step

We have $f\left( {x,y,z} \right) = 2{x^2} + 8z$ and the parametrization ${\bf{r}}\left( t \right) = \left( {{{\rm{e}}^t},{t^2},t} \right)$ for $0 \le t \le 1$. So, $f\left( {{\bf{r}}\left( t \right)} \right) = 2{{\rm{e}}^{2t}} + 8t$ $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( {{{\rm{e}}^t},2t,1} \right)\cdot\left( {{{\rm{e}}^t},2t,1} \right)} = \sqrt {{{\rm{e}}^{2t}} + 4{t^2} + 1} $ By Eq. (4): $\mathop \smallint \limits_C^{} f\left( {x,y,z} \right){\rm{d}}s = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$ $\mathop \smallint \limits_C^{} \left( {2{x^2} + 8z} \right){\rm{d}}s = \mathop \smallint \limits_0^1 \left( {2{{\rm{e}}^{2t}} + 8t} \right)\sqrt {{{\rm{e}}^{2t}} + 4{t^2} + 1} {\rm{d}}t$ Write $u = {{\rm{e}}^{2t}} + 4{t^2} + 1$. So, $du = \left( {2{{\rm{e}}^{2t}} + 8t} \right)dt$. The integral becomes $\mathop \smallint \limits_C^{} \left( {2{x^2} + 8z} \right){\rm{d}}s = \mathop \smallint \limits_2^{{{\rm{e}}^2} + 5} {u^{1/2}}{\rm{d}}u = \frac{2}{3}\left( {{u^{3/2}}|_2^{{{\rm{e}}^2} + 5}} \right)$ $ = \frac{2}{3}\left( {{{\left( {{{\rm{e}}^2} + 5} \right)}^{3/2}} - 2\sqrt 2 } \right)$ So, $\mathop \smallint \limits_C^{} \left( {2{x^2} + 8z} \right){\rm{d}}s = \frac{2}{3}\left( {{{\left( {{{\rm{e}}^2} + 5} \right)}^{3/2}} - 2\sqrt 2 } \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.