Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 732: 2

Answer

(a) $f\left( {{\bf{r}}\left( t \right)} \right) = 3{t^2} + {t^4}$ $ds = 2\sqrt {11} tdt$ (b) $\mathop \smallint \limits_C^{} f\left( {x,y,z} \right){\rm{d}}s = \frac{{26}}{3}\sqrt {11} $

Work Step by Step

(a) We have $f\left( {x,y,z} \right) = x + yz$. Using the parametrization ${\bf{r}}\left( t \right) = \left( {3{t^2},{t^2},{t^2}} \right)$ for $0 \le t \le \sqrt 2 $, we obtain $f\left( {{\bf{r}}\left( t \right)} \right) = 3{t^2} + {t^4}$ $ds = ||{\bf{r}}'\left( t \right)||dt$ $ds = \sqrt {\left( {6t,2t,2t} \right)\cdot\left( {6t,2t,2t} \right)} dt = \sqrt {44} tdt = 2\sqrt {11} tdt$ (b) By Eq. (4): $\mathop \smallint \limits_C^{} f\left( {x,y,z} \right){\rm{d}}s = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$ $ = 2\sqrt {11} \mathop \smallint \limits_0^{\sqrt 2 } \left( {3{t^2} + {t^4}} \right)t{\rm{d}}t$ $ = 2\sqrt {11} \mathop \smallint \limits_0^{\sqrt 2 } \left( {3{t^3} + {t^5}} \right){\rm{d}}t$ $ = 2\sqrt {11} \left( {\frac{3}{4}{t^4} + \frac{1}{6}{t^6}} \right)|_0^{\sqrt 2 }$ $ = 2\sqrt {11} \left( {3 + \frac{8}{6}} \right) = \frac{{26}}{3}\sqrt {11} $ So, $\mathop \smallint \limits_C^{} f\left( {x,y,z} \right){\rm{d}}s = \frac{{26}}{3}\sqrt {11} $. Notice that it gives the same result as in Exercise 1.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.