Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - Chapter Review Exercises - Page 670: 60

Answer

$\frac{-8+4\sqrt{6}+2\sqrt{7}-\sqrt{42}}{2}$

Work Step by Step

Given \begin{equation} \frac{4-\sqrt{7}}{2+\sqrt{6}}. \end{equation} Simplify by rationalizing the denominator. \begin{equation} \begin{aligned} \frac{4-\sqrt{7}}{2+\sqrt{6}}&=\frac{(4-\sqrt{7})}{(2+\sqrt{6})}\cdot \frac{(2-\sqrt{6})}{(2-\sqrt{6})}\\ & =\frac{4(2-\sqrt{6})-\sqrt{7}(2-\sqrt{6})}{4-6}\\ &=\frac{8-4\sqrt{6}-2\sqrt{7}+\sqrt{42}}{-2}\\ &=\frac{-8+4\sqrt{6}+2\sqrt{7}-\sqrt{42}}{2}. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.