Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - Chapter Review Exercises - Page 670: 57

Answer

$\frac{5\sqrt[3]{4 xy^2}}{2y}$

Work Step by Step

Given \begin{equation} \frac{5 x}{\sqrt[3]{2 x^2 y}}. \end{equation} Simplify by rationalizing the denominator. \begin{equation} \begin{aligned} \frac{5 x}{\sqrt[3]{2 x^2 y}}&= \frac{5 x}{\sqrt[3]{2 x^2 y}}\cdot \frac{\sqrt[3]{2^2 x y^2}}{\sqrt[3]{2^2 x y^2}}\\ & =\frac{5 x \sqrt[3]{4 xy^2}}{\sqrt[3]{2^3 x^3 y^3}}\\ &= \frac{5x\sqrt[3]{4 xy^2}}{2xy}\\ &= \frac{5\sqrt[3]{4 xy^2}}{2y}. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.