Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 38

Answer

$\rightarrow \lambda_1=2; \lambda_2=-5;\lambda_3=0$

Work Step by Step

We are given: $\det (A- \lambda I)=0$ Using cofactor expansion along the first column of $A−\lambda I$, we obtain $\det(A−\lambda)=\det \begin{bmatrix} -5-\lambda & -1 & 1\\ -2& -1-\lambda & 0 \\ -5 & 2 & 3-\lambda \end{bmatrix}=0$ $(3- \lambda).[(-5- \lambda)(-1-\lambda)-(-1)(-2)]+[(-2.2-(-1-\lambda).=0$ $(3- \lambda).(3+6 \lambda+\lambda^2)+(-9-5\lambda)=0$ $9+18\lambda+3\lambda^2-3\lambda-6\lambda^2-\lambda^3-9-5\lambda=0$ $-\lambda^3-3\lambda^2+10\lambda=0$ $(7-\lambda)(\lambda^2-3\lambda-28)$ $(\lambda-2)(\lambda+5)\lambda=0$ $\rightarrow \lambda_1=2; \lambda_2=-5;\lambda_3=0$ The eigenvalues of the given matrix A are : $\rightarrow \lambda_1=2; \lambda_2=-5;\lambda_3=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.