Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 46

Answer

See answers below

Work Step by Step

$C_{11}=(-1)^{1+1}.\begin{vmatrix} 2 &1\\ 7 &-1 \end{vmatrix}=1.(-9)=-9$ $C_{21}=(-1)^{2+1}.\begin{vmatrix} -3 & 5\\ 7&-1 \end{vmatrix}=(-1).(-32)=32$ $C_{31}=(-1)^{3+1}.\begin{vmatrix} -3&5\\ 2&1 \end{vmatrix}=1.(-10)=-10$ $C_{12}=(-1)^{1+2}.\begin{vmatrix} 1 & 1\\ 0&-1 \end{vmatrix}=(-1).(-1)=1$ $C_{22}=(-1)^{2+2}.\begin{vmatrix} 2 & 5\\ 0 &-1 \end{vmatrix}=1.(-2)=-2$ $C_{32}=(-1)^{3+2}.\begin{vmatrix} 2 & 5\\ 1&1 \end{vmatrix}=(-1).(-3)=3$ $C_{13}=(-1)^{1+3}.\begin{vmatrix} 1 &2\\ 0&7 \end{vmatrix}=1.7=7$ $C_{23}=(-1)^{2+3}.\begin{vmatrix} 2&-3\\ 0 &7 \end{vmatrix}=(-1).14=-14$ $C_{33}=(-1)^{3+3}.\begin{vmatrix} 2& -3\\ 1&2 \end{vmatrix}=1.7=7$ a) We have $det(A)=a_{11}C_{11}+a_{21}C_{21}+a_{31}C_{31}$ where $C_{ij}=(-1)^{i+j}.M_{ij}$ $\det(A)=a_{11}C_{11}+a_{12}C_{12}+a_{31}C_{31}=2.(-9)+1.32+0.(-13)=14$ b)$M_C=\begin{bmatrix} C_{11} & C_{12} & C_{13}\\ C_{21} & C_{22} & C_{32} \\ C_{31} & C_{32} & C_{33} \\ \end{bmatrix}=\begin{bmatrix} -9 &1 &7\\ 32& -2&-14\\ -13 & 3 & 7 \end{bmatrix}$ c) $adj(A)=\begin{bmatrix} -9 & 32 &-13\\ 1 & -2 & 3 \\ 7 &-14& 7 \end{bmatrix}$ d) Because $\det(A)=6 \ne 0$, we are able to find $A^{-1}$ by using the theorem: $A^{-1}=\frac{1}{\det(A)}adj(A)=\frac{1}{14}.\begin{bmatrix} -9 & 32 &-13\\ 1 & -2 & 3 \\ 7 &-14& 7 \end{bmatrix}=\begin{bmatrix} \frac{-9}{14} & \frac{16}{7} & \frac{-13}{14}\\ \frac{1}{14} & \frac{-1}{7} & \frac{3}{14} \\ \frac{1}{2} &-1& \frac{1}{2} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.