Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 58

Answer

See below

Work Step by Step

According to The Adjoint Method for Computing $A^{-1}$, we have the formula: $$A^{-1}=\frac{1}{\det(A)}adj(A)$$ Since $adj(A)=M^T_C$, we find: $C _{11}=(-1)^{1+1}.M_{11}=-1\\ C_{21}=(-1)^{2+1}.M_{21}=3\\ C_{31}=(-1)^{3+1}.M_{31}=-2\\ C_{12}=(-1)^{1+2}.M_{12}=2\\ C_{22}=(-1)^{2+2}.M_{22}=-6\\ C_{32}=(-1)^{3+2}.M_{32}=4\\ C_{13}=(-1)^{1+3}.M_{13}=-1\\ C_{23}=(-1)^{2+3}.M_{23}=3\\ C_{33}=(-1)^{3+3}.M_{33}=-2$ Hence, $M_C=\begin{bmatrix} -1 & 2 & -1 \\ 3 & -6 & 3\\-2 & 4 & -2 \end{bmatrix}\\ \rightarrow adj(A)=\begin{bmatrix} -1 & 3 & -2\\2 & -6 & 4\\-1 & 3 & -2 \end{bmatrix}$ Consequently, $A.\det(A)=\det(A).I_n\\ \rightarrow \det(A)=\begin{bmatrix} 1 & 2 & 3 \\3 & 4 & 5\\5 & 6 & 7 \end{bmatrix}\begin{bmatrix} -1 & 3 & -2\\2 & -6 & 4\\-1 & 3 & -2 \end{bmatrix}=\begin{bmatrix} 0 & 0 & 0\\0 & 0 & 0 \\ 0& 0 & 0 \end{bmatrix}=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.