Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 55

Answer

See below

Work Step by Step

According to The Adjoint Method for Computing $A^{-1}$, we have the formula: $$A^{-1}=\frac{1}{\det(A)}adj(A)$$ Finding $\det(A)=3e^t.2e^{2t}-(e^{2t}.2e^t)\\=6e^{3t}-2e^{3t}\\ =4e^{3t}$ Since $adj(A)=M^T_C$, we find: $C_{11}=(-1)^{1+1}.M_{11}=e^{2t}\\ C_{21}=(-1)^{2+1}.M_{21}=(-1)e^{2t}=-e^{2t}\\ C_{12}=(-1)^{1+2}.M_{12}=(-1).2e^{t}=-2e^t\\ C_{22}=(-1)^{2+2}.M_{22}=1.3e^{t}=3e^t$ Hence, $M_C=\begin{bmatrix} 2e^{2t}&-2e^t \\-e^{2t} &3e^t \end{bmatrix}\\ \rightarrow adj(A)=\begin{bmatrix} 2e^{2t}&-e^{2t} \\-2e^{t} &3e^t \end{bmatrix}$ Consequently, $A^{-1}=\frac{1}{4e^{3t}}\begin{bmatrix} 2e^{2t}&-e^{2t} \\-2e^{t} &3e^t \end{bmatrix}=\begin{bmatrix} \frac{1}{e^{2t}}& -\frac{1}{4e^t} \\-\frac{1}{2e^{2t}} & \frac{3}{4e^{2t}} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.