Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 56

Answer

See below

Work Step by Step

According to The Adjoint Method for Computing $A^{-1}$, we have the formula: $$A^{-1}=\frac{1}{\det(A)}adj(A)$$ Finding $\det(A)=-e^{-2t}(-t.e^{3t}.e^{3t}-e^{3t}.(-te^{3t}))-e^{-2t}(e^{3t}.e^{3t}-9te^{3t}.(-te^{3t}))\\=te^{4t}-te^{4t}-e^{4t}-9t^2e^{4t}\\ =-e^{4t}(1+9t^2)$ Since $adj(A)=M^T_C$, we find: $C_{11}=(-1)^{1+1}.M_{11}=-e^{t}\\ C_{21}=(-1)^{2+1}.M_{21}=e^{t}\\ C_{31}=(-1)^{3+1}.M_{31}=9te^{t}+e^t\\ C_{12}=(-1)^{1+2}.M_{12}=-e^t\\ C_{22}=(-1)^{2+2}.M_{22}=-e^t\\ C_{32}=(-1)^{3+2}.M_{32}=-e^t+te^t\\ C_{13}=(-1)^{1+3}.M_{13}=0\\ C_{23}=(-1)^{2+3}.M_{23}=-e^{6t}-9t^2e^{6t}\\ C_{33}=(-1)^{3+3}.M_{33}=e^{6t}+9t^2e^{6t}$ Hence, $M_C=\begin{bmatrix} -e^{t}&-te^t & 0\\e^{t} & -te^t & -e^{6t}(9t^2+1) \\e^t(9t+1)&e^t(t-1)&e^{6t}(1+9t^2) \end{bmatrix}\\ \rightarrow adj(A)=\begin{bmatrix} -e^{t}&e^t & e^t(9t+1)\\-te^{t} & -te^t & e^{t}(t-1) \\ 0 &-e^{6t}(1+9t^2)&e^{6t}(1+9t^2) \end{bmatrix}$ Consequently, $A^{-1}=-\frac{1}{e^{4t}(9t^2+1)} \begin{bmatrix} -e^{t}&e^t & e^t(9t+1)\\-te^{t} & -te^t & e^{t}(t-1) \\ 0 &-e^{6t}(1+9t^2)&e^{6t}(1+9t^2) \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.