Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 51

Answer

(3,2)- element in the inverse of the given matrix is $-1$

Work Step by Step

$ \det(A)=\begin{bmatrix} 1 & 1 & 1\\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}=1.2+(-1).1+1.0=1$ To find (3,2)- element in the inverse of the given matrix A: $(A^{-1})_{32}=\frac{1}{\det(A)}adj.A_{32}=\frac{1}{\det(A)}.C_{32}$ Now find the cofactor $C_{11}$ of the matrix A: $C_{32}=(-1)^{3+2}.M_{32}=-1.\begin{vmatrix} 1 & 1\\ 1 & 2 \end{vmatrix}=(-1).1=-1$ Hence, $(A^{-1})_{32}=\frac{1}{\det(A)}.C_{32}=\frac{1}{1}.(-1)=-1$ (3,2)- element in the inverse of the given matrix is $-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.