Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 54

Answer

See below

Work Step by Step

According to The Adjoint Method for Computing $A^{-1}$, we have the formula: $$A^{-1}=\frac{1}{\det(A)}adj(A)$$ Finding $\det(A)=e^t\sin 2t.e^{-t}\sin 2t-(-e^{-t}\cos 2t.e^t\cos 2t)\\=\sin^2 2t+\cos^2 2t\\ =1$ Since $adj(A)=M^T_C$, we find: $C_{11}=(-1)^{1+1}.M_{11}=e^{-t}\sin 2t\\ C_{21}=(-1)^{2+1}.M_{21}=e^{-t}\cos 2t\\ C_{12}=(-1)^{1+2}.M_{12}=-e^{-t}\cos 2t\\ C_{22}=(-1)^{2+2}.M_{22}=e^{t}\sin 2t$ Hence, $M_C=\begin{bmatrix} e^{-t}\sin 2t & -e^t\cos 2t\\e^{-t}\cos 2t & e^t\sin 2t \end{bmatrix}\\ \rightarrow adj(A)=\begin{bmatrix} e^{-t}\sin 2t & e^{-t}\cos 2t\\-e^{t}\cos 2t & e^t\sin 2t \end{bmatrix}$ Consequently, $A^{-1}=\begin{bmatrix} e^{-t}\sin 2t & e^{-t}\cos 2t\\-e^{t}\cos 2t & e^t\sin 2t \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.