Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 43

Answer

See answers below

Work Step by Step

$C_{11}=(-1)^{1+1}.\begin{vmatrix} 1 & 5\\ 2 &3 \end{vmatrix}=1.(-7)=-7$ $C_{21}=(-1)^{2+1}.\begin{vmatrix} 3 & -1\\ 2&3 \end{vmatrix}=(-1).11=-11$ $C_{31}=(-1)^{3+1}.\begin{vmatrix} 3 &-1\\ 3&5 \end{vmatrix}=1.16=16$ $C_{12}=(-1)^{1+2}.\begin{vmatrix} 2 & 5\\ 0 &3 \end{vmatrix}=(-1).6=-6$ $C_{22}=(-1)^{2+2}.\begin{vmatrix} -2 & -1\\ 0 &3 \end{vmatrix}=1.(-6)=-6$ $C_{32}=(-1)^{3+2}.\begin{vmatrix} -2 & -1\\ 2 &5 \end{vmatrix}=(-1).8=-8$ $C_{13}=(-1)^{1+3}.\begin{vmatrix} 2 & 1\\ 0 &2 \end{vmatrix}=1.4=4$ $C_{23}=(-1)^{2+3}.\begin{vmatrix} -2 & 3\\ 0 &0 \end{vmatrix}=(-1).(-4)=4$ $C_{33}=(-1)^{3+3}.\begin{vmatrix} -2 & 3\\ 2&1 \end{vmatrix}=1.4=4$ a) We have $det(A)=a_{11}C_{11}+a_{21}C_{21}+a_{31}C_{31}$ where $C_{ij}=(-1)^{i+j}.M_{ij}$ $\det(A)=a_{11}C_{11}+a_{12}C_{12}+a_{31}C_{31}=-2.(-7)+2.(-1)+0.16=12$ b)$M_C=\begin{bmatrix} C_{11} & C_{12} & C_{13}\\ C_{21} & C_{22} & C_{32} \\ C_{31} & C_{32} & C_{33} \\ \end{bmatrix}=\begin{bmatrix} -7 & -6 & 4\\ -11 & -6 & 4 \\ 16 & 8 & 4 \end{bmatrix}$ c) $adj(A)=\begin{bmatrix} -7 & -11 &16\\ -6 & -6 & 8 \\ 4 & 4 & 4 \end{bmatrix}$ d) Because $\det(A)=12 \ne 0$, we are able to find $A^{-1}$ by using the theorem: $A^{-1}=\frac{1}{\det(A)}adj(A)=\frac{1}{12}.\begin{bmatrix} -7 & -11 &16\\ -6 & -6 & 8 \\ 4 & 4 & 4 \end{bmatrix}=\begin{bmatrix} \frac{-7}{12} & \frac{-11}{12} & \frac{4}{3}\\ \frac{-1}{2} & \frac{-1}{2} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.