Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 52

Answer

(3,1)- element in the inverse of the given matrix is $-\frac{5}{7}$

Work Step by Step

$ \det(A)=\begin{bmatrix} 2 & 0 & -1\\ 2 & 1 & 1 \\ 3 & -1 & 0 \end{bmatrix}=(-1).(-5)+(-2).(-1)+2.0=7$ To find (3,1)- element in the inverse of the given matrix A: $(A^{-1})_{31}=\frac{1}{\det(A)}adj.A_{31}=\frac{1}{\det(A)}.C_{31}$ Now find the cofactor $C_{11}$ of the matrix A: $C_{31}=(-1)^{3+1}.M_{32}=1.\begin{vmatrix} 2 & 1\\ 3& -1 \end{vmatrix}=(-5).1=-5$ Hence, $(A^{-1})_{31}=\frac{1}{\det(A)}.C_{31}=\frac{1}{7}.(-5)=-\frac{5}{7}$ (3,1)- element in the inverse of the given matrix is $-\frac{5}{7}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.