Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 45

Answer

See answers below

Work Step by Step

$C_{11}=(-1)^{1+1}.\begin{vmatrix} -1 & 3\\ -2 &1 \end{vmatrix}=1.5=5$ $C_{21}=(-1)^{2+1}.\begin{vmatrix} 1 & 2\\ -2&1 \end{vmatrix}=(-1).5=-5$ $C_{31}=(-1)^{3+1}.\begin{vmatrix} 1 &2\\ -1&3 \end{vmatrix}=1.5=5$ $C_{12}=(-1)^{1+2}.\begin{vmatrix} -1 & 3\\ 1&1 \end{vmatrix}=(-1).(-4)=4$ $C_{22}=(-1)^{2+2}.\begin{vmatrix} 0 & 2\\ 1 &1 \end{vmatrix}=1.(-2)=-2$ $C_{32}=(-1)^{3+2}.\begin{vmatrix} 0 & 2\\ -1&3 \end{vmatrix}=(-1).2=-2$ $C_{13}=(-1)^{1+3}.\begin{vmatrix} -1 & -1\\ 1&-2 \end{vmatrix}=1.3=3$ $C_{23}=(-1)^{2+3}.\begin{vmatrix} 0 & 1\\ 1 &-2 \end{vmatrix}=(-1).(-1)=1$ $C_{33}=(-1)^{3+3}.\begin{vmatrix} 0 & 1\\ -1&-1 \end{vmatrix}=1.1=1$ a) We have $det(A)=a_{11}C_{11}+a_{21}C_{21}+a_{31}C_{31}$ where $C_{ij}=(-1)^{i+j}.M_{ij}$ $\det(A)=a_{11}C_{11}+a_{12}C_{12}+a_{31}C_{31}=0.5+(-1)(-5)+5.1=10$ b)$M_C=\begin{bmatrix} C_{11} & C_{12} & C_{13}\\ C_{21} & C_{22} & C_{32} \\ C_{31} & C_{32} & C_{33} \\ \end{bmatrix}=\begin{bmatrix} 5 &4 & 3\\ -5& -2&1\\ 5 & -2 & 1 \end{bmatrix}$ c) $adj(A)=\begin{bmatrix} 5 & -5 &5\\ 4 & -2 & -2 \\ 3 &1& 1 \end{bmatrix}$ d) Because $\det(A)=6 \ne 0$, we are able to find $A^{-1}$ by using the theorem: $A^{-1}=\frac{1}{\det(A)}adj(A)=\frac{1}{10}.\begin{bmatrix} 5 & -5 &5\\ 4 & -2 & -2 \\ 3 &1& 1 \end{bmatrix}=\begin{bmatrix} \frac{1}{2} & \frac{-1}{2} & \frac{1}{2}\\ \frac{2}{5} & \frac{-1}{5} & \frac{-1}{5} \\ \frac{3}{10} &\frac{1}{10}& \frac{1}{10} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.