Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 53

Answer

(2,3)- element in the inverse of the given matrix is $\frac{9}{16}$

Work Step by Step

$ \det(A)=1\begin{bmatrix} -1 & 1 & 3\\ 0& 1 & 2 \\ -1 & 1 & 0 \end{bmatrix}+1\begin{bmatrix} 2 & -1 & 3\\ 0& 1 & 2 \\ -1 & 1 & 0 \end{bmatrix}=15+1=16$ To find (2,3)- element in the inverse of the given matrix A: $(A^{-1})_{23}=\frac{1}{\det(A)}adj.A_{23}=\frac{1}{\det(A)}.C_{32}$ Now find the cofactor $C_{11}$ of the matrix A: $C_{32}=(-1)^{3+2}.M_{32}=1.\begin{vmatrix} 1 & 1 &0\\ 2& 1&3\\ -1 & 2 & 0 \end{vmatrix}=(-1).(-9)=9$ Hence, $(A^{-1})_{23}=\frac{1}{\det(A)}.C_{32}=\frac{1}{16}.(9)=\frac{9}{16}$ (2,3)- element in the inverse of the given matrix is $\frac{9}{16}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.