Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 62

Answer

$x_1=\frac{3}{2}$ $x_2=0$ $x_3=\frac{-1}{2}$

Work Step by Step

We are given: $3x_1-2x_2+x_3=4$ $x_1+x_2+x_3=2$ $x_1+x_3=1$ which can also be written as: $A=\begin{bmatrix} 3 & -2&1\\ 1 & 1&-1\\ 1&0&1 \end{bmatrix} \rightarrow \det(A)=3+4-1=6$ $B_1=\begin{bmatrix} 4 &-2&1\\ 2 & 1&-1\\ 1&0&1 \end{bmatrix} \rightarrow \det(A)=4+6-1=9$ $B_2=\begin{bmatrix} 3 &4&1\\ 1& 2&-1\\ 1&1&1 \end{bmatrix} \rightarrow \det(A)=9-8-1=0$ $B_3=\begin{bmatrix} 3&-2&4\\ 1& 1&2\\ 1&0&1 \end{bmatrix} \rightarrow \det(A)=3-2-4=-3$ Use Cramer’s rule: $x_k=\frac{\det(B_k)}{\det(A)}$ to find the results: $x_1=\frac{\det(B_1)}{\det(A)}=\frac{9}{6}=\frac{3}{2}$ $x_2=\frac{\det(B_2)}{\det(A)}=\frac{0}{6}=0$ $x_3=\frac{\det(B_3)}{\det(A)}=\frac{-3}{6}=\frac{-1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.