Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 40

Answer

See answers below

Work Step by Step

a) We have $det(A)=a_{11}C_{11}+a_{21}C_{21}$ with $C_{11}=(-1)^{1+1}.1=1$ $C_{12}=(-1)^{1+2}.4=-4$ $\det(A)=a_{11}C_{11}+a_{12}C_{12}=(-1).1+(-2).(-4)=7$ b) $C_{21}=(-1)^{2+1}.(-2)=2$ $C_{22}=(-1)^{2+2}.(-1)=-1$ then $M_C=\begin{bmatrix} C_{11} & C_{12}\\ C_{21} & C_{21} \end{bmatrix}=\begin{bmatrix} 1 &-4\\ 2 &-1 \end{bmatrix}$ c) $adj(A)=\begin{bmatrix} 1 & 2\\ -4 & -1 \end{bmatrix}$ d) Because $\det(A)=7 \ne 0$, we are able to find $A^{-1}$ by using the theorem: $A^{-1}=\frac{1}{\det(A)}adj(A)=\frac{1}{7}.\begin{bmatrix} 1 & 2\\ -4 & -1 \end{bmatrix}=\begin{bmatrix} \frac{1}{7} & \frac{2}{7}\\ \frac{-4}{7} & \frac{-1}{7} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.