Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 47

Answer

See answers below

Work Step by Step

$C_{11}=(-1)^{1+1}.\begin{vmatrix} 1 & -1 &1\\ 1 & -1 & -1\\ 1 & 1 &-1 \end{vmatrix}=1.1.2=2$ $C_{21}=(-1)^{2+1}.\begin{vmatrix} 1 & 1 &1\\ 1 & -1 & -1\\ 1 & 1 &-1 \end{vmatrix}=(-1).1.2=-2$ $C_{31}=(-1)^{3+1}.\begin{vmatrix} 1 & 1 &1\\ 1 & -1 & 1\\ 1 & 1 &-1 \end{vmatrix}=1.1.0=0$ $C_{41}=(-1)^{4+1}.\begin{vmatrix} 1 & 1 &1\\ 1 & -1 & -1\\ 1 & 1 &-1 \end{vmatrix}=(-1).1.2=-2$ $C_{12}=(-1)^{1+2}.\begin{vmatrix} 1 & 1 &1\\ 1 & -1 & -1\\ 1 & 1 &-1 \end{vmatrix}=(-1).1.2=-2$ $C_{22}=(-1)^{2+2}.\begin{vmatrix} 1 & 1 &1\\ 1 & -1 & -1\\ -1 & 1 &-1 \end{vmatrix}=1.1.2=2$ $C_{42}=(-1)^{4+2}.\begin{vmatrix} 1 & 1 &1\\ -1 & -1 & 1\\ 1 & -1 &-1 \end{vmatrix}=1.1.2=2$ $C_{13}=(-1)^{1+3}.\begin{vmatrix} -1 & 1 &1\\ 1 & 1 & -1\\ -1 & 1 &-1 \end{vmatrix}=(-1).1.0=0$ $C_{32}=(-1)^{2+3}.\begin{vmatrix} 1 & 1 &1\\ -1 &-1 & 1\\ -1 & 1 &-1 \end{vmatrix}=(-1).1.0=0$ $C_{23}=(-1)^{2+3}.\begin{vmatrix} 1 & 1 &1\\ 1 & 1 & -1\\ -1 & 1 &-1 \end{vmatrix}=(-1).1.0=0$ $C_{33}=(-1)^{3+3}.\begin{vmatrix} 1 & 1 &1\\ -1 & 1 & 1\\ -1 & 1 &-1 \end{vmatrix}=(-2).1.1=-2$ $C_{43}=(-1)^{4+3}.\begin{vmatrix} 1 & 1 &1\\ -1 & 1 & 1\\ 1 & 1 &-1 \end{vmatrix}=(-1).1.(-2)=2$ $C_{14}=(-1)^{4+1}.\begin{vmatrix} -1 & 1 &-1\\ 1 & 1 & -1\\ -1 & 1 &1 \end{vmatrix}=(-)1.(-1).2=2$ $C_{24}=(-1)^{2+4}.\begin{vmatrix} 1 & 1 &1\\ 1 & 1 & -1\\ -1 & 1 &1 \end{vmatrix}=1.1.2=2$ $C_{3}=(-1)^{3+4}.\begin{vmatrix} 1 & 1 &1\\ -1 & 1 & -1\\ -1 & 1 &1 \end{vmatrix}=(-1).1.2=-2$ $C_{44}=(-1)^{4+4}.\begin{vmatrix} 1 & 1 &1\\ -1 & 1 & -1\\ 1 & 1 &-1 \end{vmatrix}=1.1.0=0$ a) We have $det(A)=a_{11}C_{11}+a_{21}C_{21}+a_{31}C_{31}+a_{41}C_{41}=1.2-1(-2)+1.0-1.(-2)=6$ b)$M_C=\begin{bmatrix} 2 &-2 & 0 &2\\ -2& 2&0&2\\ 0 &0 & -2 &-2\\ -2 &2 &2 & 0 \end{bmatrix}$ c) $adj(A)=\begin{bmatrix} 2 &-2 & 0 &-2\\ -2& 2&0&2\\ 0 &0 & -2 &2\\ -2 &2 &2 & 0 \end{bmatrix}$ d) Because $\det(A)=6 \ne 0$, we are able to find $A^{-1}$ by using the theorem: $A^{-1}=\frac{1}{\det(A)}adj(A)=\frac{1}{6}.\begin{bmatrix} 2 &-2 & 0 &-2\\ -2& 2&0&2\\ 0 &0 & -2 &2\\ -2 &2 &2 & 0 \end{bmatrix}=\begin{bmatrix} \frac{1}{3} & \frac{-1}{3} & 0 & \frac{-1}{3}\\ \frac{-1}{3} & \frac{1}{3} & 0 & \frac{1}{3}\\ 0 &0& \frac{-1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{-1}{3} &0 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.