Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 41

Answer

See answers below

Work Step by Step

a) We have $det(A)=a_{11}C_{11}+a_{21}C_{21}$ with $C_{11}=(-1)^{1+1}.(-6)=-6$ $C_{12}=(-1)^{1+2}.(-15)=15$ $\det(A)=a_{11}C_{11}+a_{12}C_{12}=(-6).5+15.2=0$ b) $C_{21}=(-1)^{2+1}.2=-2$ $C_{22}=(-1)^{2+2}.5=5$ then $M_C=\begin{bmatrix} C_{11} & C_{12}\\ C_{21} & C_{21} \end{bmatrix}=\begin{bmatrix} -6 &15\\ -2 &5 \end{bmatrix}$ c) $adj(A)=\begin{bmatrix} -6& -2\\ 15& 5 \end{bmatrix}$ d) Because $\det(A)=0 $, we are not able to find $A^{-1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.