Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 44

Answer

See answers below

Work Step by Step

$C_{11}=(-1)^{1+1}.\begin{vmatrix} -1 & 4\\ 1 &7 \end{vmatrix}=1.(-11)=-11$ $C_{21}=(-1)^{2+1}.\begin{vmatrix} -1 & 2\\ 1&7 \end{vmatrix}=(-1).(-9)=9$ $C_{31}=(-1)^{3+1}.\begin{vmatrix} -1 &2\\ -1&4 \end{vmatrix}=1.(-2)=-2$ $C_{12}=(-1)^{1+2}.\begin{vmatrix} 3 & 4\\ 5&7 \end{vmatrix}=(-1).1=-1$ $C_{22}=(-1)^{2+2}.\begin{vmatrix} 1 & 2\\ 5 &7 \end{vmatrix}=1.(-3)=-3$ $C_{32}=(-1)^{3+2}.\begin{vmatrix} 1 & 2\\ 3&4 \end{vmatrix}=(-1).(-2)=2$ $C_{13}=(-1)^{1+3}.\begin{vmatrix} 3 & -1\\ 5&1 \end{vmatrix}=1.8=8$ $C_{23}=(-1)^{2+3}.\begin{vmatrix} 1 & -1\\ 5 &1 \end{vmatrix}=(-1).6=-6$ $C_{33}=(-1)^{3+3}.\begin{vmatrix} 1 & -1\\ 3&-1 \end{vmatrix}=1.2=2$ a) We have $det(A)=a_{11}C_{11}+a_{21}C_{21}+a_{31}C_{31}$ where $C_{ij}=(-1)^{i+j}.M_{ij}$ $\det(A)=a_{11}C_{11}+a_{12}C_{12}+a_{31}C_{31}=1.(-11)+3.9+5.(-2)=6$ b)$M_C=\begin{bmatrix} C_{11} & C_{12} & C_{13}\\ C_{21} & C_{22} & C_{32} \\ C_{31} & C_{32} & C_{33} \\ \end{bmatrix}=\begin{bmatrix} -11 & -1 & 9\\ 9& -3 & -6 \\ -2 & 2 & 2 \end{bmatrix}$ c) $adj(A)=\begin{bmatrix} -11 & 9 &-2\\ -1 & -3 & 2 \\ 8 & -6& 2 \end{bmatrix}$ d) Because $\det(A)=6 \ne 0$, we are able to find $A^{-1}$ by using the theorem: $A^{-1}=\frac{1}{\det(A)}adj(A)=\frac{1}{6}.\begin{bmatrix} -11 & 9 &-2\\ -1 & -3 & 2 \\ 8 & -6& 2 \end{bmatrix}$=\begin{bmatrix} \frac{-11}{6} & \frac{3}{2} & \frac{-1}{3}\\ \frac{-1}{6} & \frac{-1}{2} & \frac{1}{3} \\ \frac{4}{3} &-1& \frac{1}{3} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.