Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 234: 57

Answer

See below

Work Step by Step

According to The Adjoint Method for Computing $A^{-1}$, we have the formula: $$A^{-1}=\frac{1}{\det(A)}adj(A)$$ Finding $\det(A)=e^{-2t}(e^{t}.te^{t}-2te^{t}.e^{t})-e^{-2t}(e^{t}.te^{t}-te^{t}.e^{t})+2e^{-t}(e^t.2te^t-te^t.e^t)\\=t-2t-t+t+4t-2t\\ =t$ Since $adj(A)=M^T_C$, we find: $C _{11}=(-1)^{1+1}.M_{11}=3te^{-t}\\ C_{21}=(-1)^{2+1}.M_{21}=-te^{t}\\ C_{31}=(-1)^{3+1}.M_{31}=-te^{-t}\\ C_{12}=(-1)^{1+2}.M_{12}=-e^t(1-2t)\\ C_{22}=(-1)^{2+2}.M_{22}=-e^{-t}(-2t+1)\\ C_{32}=(-1)^{3+2}.M_{32}=0\\ C_{13}=(-1)^{1+3}.M_{13}=0\\ C_{23}=(-1)^{2+3}.M_{23}=te^{2t}\\ C_{33}=(-1)^{3+3}.M_{33}=te^{2t}$ Hence, $M_C=\begin{bmatrix} 3te^{-t}&e^{-t}(1-2t) & 0\\-te^{-t} & -e^t(1-2t) & te^{2t} \\-te^{-t}& 0 &te^{2t} \end{bmatrix}\\ \rightarrow adj(A)=\begin{bmatrix} 3te^{-t}&-te^{-t} & -te^{-t}\\-e^t(1-2t) & -e^{-t}(1-2t)& 0 \\0 & te^{t} &te^{2t} \end{bmatrix}$ Consequently, $A^{-1}=\frac{1}{t} \begin{bmatrix} 3te^{-t}&-te^{-t} & -te^{-t}\\-e^t(1-2t) & -e^{-t}(1-2t)& 0 \\0 & te^{t} &te^{2t} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.