Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 233: 37

Answer

$\rightarrow \lambda_1=7; \lambda_2=-9;\lambda_3=5$

Work Step by Step

We are given: $\det (A- \lambda I)=0$ Using cofactor expansion along the first column of $A−\lambda I$, we obtain $\det(A−\lambda)=\det \begin{bmatrix} -5-\lambda & -5 & -2\\ -8& 1-\lambda & 0 \\ -5 & 3 & 7-\lambda \end{bmatrix}=0$ $(7- \lambda).[(-5- \lambda)(1-\lambda)-(-5)(-8)]=0$ $(7- \lambda).(-5+ 4\lambda+\lambda^2)-40=0$ $(7- \lambda).( \lambda^2+4\lambda-45)=0$ $(7-\lambda)(\lambda^2-3\lambda-28)$ $(7-\lambda)(\lambda+9)(\lambda-5)$ $\rightarrow \lambda_1=7; \lambda_2=-9;\lambda_3=5$ The eigenvalues of the given matrix A are : $\rightarrow \lambda_1=7; \lambda_2=-9;\lambda_3=5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.