Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 233: 34

Answer

The eigenvalues of the given matrix A are $\rightarrow \lambda_1=-6; \lambda_2=7, \lambda_3=2$

Work Step by Step

We are given: $\det (A- \lambda I)=0$ Using cofactor expansion along the first column of $A−\lambda I$, we obtain $\det(A−\lambda)=\det \begin{bmatrix} 2-\lambda & 0 & 0\\ -1 & -6-\lambda & 0 \\ 3 & 3 & 7-\lambda \end{bmatrix}$ $=(2- \lambda).(-6- \lambda).(7-\lambda)$ $=(-12+4\lambda+\lambda^2)(7-\lambda)$ $=-84+12\lambda + 28\lambda -4\lambda^2+7\lambda^2 -\lambda^3$ $=-\lambda^3+3\lambda^2+40\lambda-84$ $\rightarrow \lambda_1=-6; \lambda_2=7, \lambda_3=2$ The eigenvalues of the given matrix A are $\rightarrow \lambda_1=-6; \lambda_2=7, \lambda_3=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.