Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 233: 29

Answer

See below

Work Step by Step

We are given: $A=\begin{bmatrix} 0 & x & y & z\\-x & 0 & 1 & -1\\-y & -1 & 0 & 1\\-z & 1 & -1 & 0 \end{bmatrix}\\ \rightarrow \det(A)=\begin{vmatrix}0 & x & y & z\\-x & 0 & 1 & -1\\-y & -1 & 0 & 1\\-z & 1 & -1 & 0\end{vmatrix}=0.\begin{vmatrix} 0 & 1 & -1\\ -1 & 0 & 1\\ 1 & -1 & 0\end{vmatrix}-x\begin{vmatrix}-x & 1 & -1\\-y & 0 & 1\\-z & -1 & 0\end{vmatrix}+y\begin{vmatrix}-x & 0 & -1\\-y & -1 & 1\\-z & 1 & 0\end{vmatrix}-z\begin{vmatrix}-x & 0 & 1\\-y & -1 & 0\\-z & 1 & -1 \end{vmatrix}$ The minors are: $\begin{vmatrix}-x & 1 & -1\\-y & 0 & 1\\-z & -1 & 0\end{vmatrix}=-y-x-z$ $\begin{vmatrix}-x & 0 & -1\\-y & -1 & 1\\-z & 1 & 0\end{vmatrix}=x+y+z$ $\begin{vmatrix}-x & 0 & 1\\-y & -1 & 0\\-z & 1 & -1 \end{vmatrix}=-x-y-z$ Hence, $\det(A)=\begin{vmatrix}-x & 0 & 1\\-y & -1 & 0\\-z & 1 & -1 \end{vmatrix}\\=-x(-x-y-z)+y(x+y+z)-z(-s-y-z)\\=x(x+y+z)+y(x+y+z)+z(x+y+z)\\=(x+y+z)(x+y+z)\\=(x+y+z)^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.