Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 233: 24

Answer

$\det(A)=11997$

Work Step by Step

Use the Cofactor ExpansionTheorem along column 1: $\det(A)=a_{11}C_{11}+a_{21}C_{21}+a_{31}C_{31}$ where $C_{ij}=(_1)^{i+j}.M_{ij}$ Hence, the the determinant is: $\det(A)=3\begin{vmatrix} 3 &5 & -5 \\ 5 &-3 &-16 \\ -6 & 27 & -12 \\ \end{vmatrix}-5\begin{vmatrix} 2 &5 & -5 \\ 7 & -3 &-16 \\ 9 & 27 &-12 \end{vmatrix}+2\begin{vmatrix} 2 &3 & -5 \\ 7 & 5 &-16 \\ 9 & -6 &-12 \end{vmatrix}-6\begin{vmatrix} 2 &3 & 5 \\ 7 & 5 &-3 \\ 9 & -6 &27 \end{vmatrix}$ $\det (A)=3.[3.468-5.(-156)-5.117]-5.(2.468-5.60-5.216)+2.[2.(-156)-3.60-5.(-87)]-6.[2.117-3.216+5.(-87)]$ $\det (A)=4797+2220-114+5094$ $\det(A)=11997$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.