Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 233: 33

Answer

The eigenvalues of the given matrix A are $\lambda_1=-3+2\sqrt 2; \lambda_2=-3-2\sqrt 2$

Work Step by Step

We are given: $\det (A- \lambda I)=0$ Using cofactor expansion along the first column of $A−\lambda I$, we obtain $\det(A−\lambda)=\det \begin{bmatrix} -1-\lambda & 2\\ -4 & 7-\lambda \end{bmatrix}$ $=(-1- \lambda).(7- \lambda)-2.(-4)$ $=-7+\lambda -7\lambda +\lambda^2 +8$ $=\lambda^2 -6\lambda +1$ $\rightarrow \lambda_1=-3+2\sqrt 2; \lambda_2=-3-2\sqrt 2$ The eigenvalues of the given matrix A are $\lambda_1=-3+2\sqrt 2; \lambda_2=-3-2\sqrt 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.