Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 233: 25

Answer

$\det(A)=-892$

Work Step by Step

Use the Cofactor ExpansionTheorem along column 1: $\det(A)=a_{11}C_{11}+a_{21}C_{21}+a_{31}C_{31}$ where $C_{ij}=(_1)^{i+j}.M_{ij}$ Hence, the the determinant is: $\det(A)=2\begin{vmatrix} 5 & -3 & 7 \\ 2&6 &3 \\ 2 & -4 & 5 \\ \end{vmatrix}-(-7)\begin{vmatrix} 5 &-3 &7 \\ 6 & 6 &3 \\ 4 & -4 &5 \end{vmatrix}+4\begin{vmatrix} 5 &5 & 7 \\ 6 & 2 &3\\ 4 & 2 &5 \end{vmatrix}-3\begin{vmatrix} 5 &5 & -3 \\ 6 & 2 &6 \\ 4 & 2 & -4 \end{vmatrix}$ $\det (A)=2.[5.42+3.4+7.(-20)]+7.[5.42+3.18+7.(-48)]+4.(5.4-5.18+7.4)-3.[5.(-20)-5.(-48)-3.4]$ $\det (A)=164-504-168-384$ $\det(A)=-892$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.