Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 233: 26

Answer

$\det(A)=31$

Work Step by Step

$\det(A)=-2\begin{vmatrix} -2 & 0 & 1 & 1 \\ 1&2 &2&0 \\ -4 & 4 & 6 &1 \\ -1 & 1 & 0 & 5 \end{vmatrix}=-2\begin{vmatrix}1 &0 &\frac{-1}{2}&\frac{-1}{2} \\ 1 &2 &2 &0 \\ -4 &4 &6&1 \\ -1 & 1 & 0 & 5 \end{vmatrix}=-2\begin{vmatrix}1 &0 &\frac{-1}{2}&\frac{-1}{2} \\ 0 &2 &\frac{5}{2} &\frac{1}{2} \\ 0 &4 &4&-1 \\ 0 & 1 & \frac{-1}{2} &\frac{9}{2} \end{vmatrix}=-4\begin{vmatrix}1 &0 &\frac{-1}{2}&\frac{-1}{2} \\ 0 &1 &\frac{5}{4} &\frac{1}{4} \\ 0 &4 &4&-1 \\ 0 & 1 & \frac{-1}{2} &\frac{9}{2} \end{vmatrix}=-4\begin{vmatrix}1 &0 &\frac{-1}{2}&\frac{-1}{2} \\ 0 &1 &\frac{5}{4} &\frac{1}{4} \\ 0 &0 &-1&-2 \\ 0 & 0 & \frac{-7}{4} &\frac{17}{4} \end{vmatrix}=4\begin{vmatrix}1 &0 &\frac{-1}{2}&\frac{-1}{2} \\ 0 &1 &\frac{5}{4} &\frac{1}{4} \\ 0 &0 &1&2 \\ 0 & 0 & \frac{-7}{4} &\frac{17}{4} \end{vmatrix}=4\begin{vmatrix}1 &0 &\frac{-1}{2}&\frac{-1}{2} \\ 0 &1 &\frac{5}{4} &\frac{1}{4} \\ 0 &0 &1&2 \\ 0 & 0 & 0 &\frac{31}{4} \end{vmatrix}$ We will apply Corollary3.2.6. The determinant of the matrix of coefficients of the system is: $\det(A)=a_{11}C_{11}+a_{21}C_{21}+a_{31}C_{31}$ where $C_{ij}=(_1)^{i+j}.M_{ij}$ $\det (A)=4.[1(-1)^{1+1}.1.\frac{31}{4}]$ $\det (A)=4.\frac{31}{4}$ $\det(A)=31$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.