Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 233: 23

Answer

$\det(A)=-15$

Work Step by Step

We will apply Corollary 3.2.6. The determinant of the matrix of coefficients of the system is: $\begin{vmatrix} -1 &3 & 3 \\ 4 & -6 & -3 \\ 2 & -1 & 4 \end{vmatrix}=1\begin{vmatrix} -1 &3 & 3 \\ 0 & 6 & 9 \\ 0 & 5 &10 \end{vmatrix}=6\begin{vmatrix} -1 &3 & 3 \\ 0 & 1& \frac{3}{2} \\ 0 & 5 &10 \end{vmatrix}=6\begin{vmatrix} -1 &3 & 3 \\ 0 & 1& \frac{3}{2} \\ 0 & 0 & \frac{5}{2} \end{vmatrix}$ Use the Cofactor ExpansionTheorem along column 1: $\det(A)=6.[a_{11}C_{11}+a_{21}C_{21}+a_{31}C_{31}]$ where $C_{ij}=(_1)^{i+j}.M_{ij}$ Hence, the the determinant is: $\det(A)=6[-1.(-1)^{1+1}.\begin{vmatrix} 1 & \frac{3}{2} \\ 0 & \frac{5}{2} \end{vmatrix}+0.(-1)^{2+1}.\begin{vmatrix} 3 & 3 \\ 0 & \frac{5}{2} \end{vmatrix}+0.(-1)^{3+1}.\begin{vmatrix} 3 & 3 \\ 1 & \frac{3}{2} \end{vmatrix}]$ $\det (A)=6[-1.1.\frac{5}{2}]$ $\det (A)=6.\frac{-5}{2}$ $\det(A)=-15$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.