Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 233: 36

Answer

$\rightarrow \lambda_1=-4; \lambda_2=\lambda_3=7$

Work Step by Step

We are given: $\det (A- \lambda I)=0$ Using cofactor expansion along the first column of $A−\lambda I$, we obtain $\det(A−\lambda)=\det \begin{bmatrix} 6-\lambda & 0 & -2\\ 0& 7-\lambda & 0 \\ -5 & 0 & -3-\lambda \end{bmatrix}=0$ $(6- \lambda).(7- \lambda)(-3-\lambda)-2(7-\lambda)(5)=0$ $(6- \lambda).(-21- 4\lambda+\lambda^2)-10(7-\lambda)=0$ $-\lambda^3+10\lambda^2+7\lambda-196=0$ $(7-\lambda)(\lambda^2-3\lambda-28)$ $(7-\lambda)(\lambda-7)(\lambda+4)$ $\rightarrow \lambda_1=-4; \lambda_2=\lambda_3=7$ The eigenvalues of the given matrix A are : $\rightarrow \lambda_1=-4; \lambda_2=\lambda_3=7$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.