Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 233: 22

Answer

$\det (A)=-171$

Work Step by Step

We have the cofactor expansion theorem for the 1st row: $\det (A)=a_{12}C_{12}+a_{22}C_{22}+a_{32}C_{32}+a_{42}C_{42}$ with $C_{ij}=(-1)^{i+j}.M_{ij}$ So, we get: $\det (A)=2C_{12}+1C_{22}+0C_{32}+1C_{42}$ $\det (A)=1\begin{vmatrix} 1 & -1 & -6 \\ 3 & 2 & 3 \\ 0 & -5 & 2 \end{vmatrix}+2\begin{vmatrix} -4 & -3 & -2 \\ 3 & 2 & 3 \\ 0 & -5 & 2 \end{vmatrix}+0\begin{vmatrix} -4 & -3 & -2 \\ 1 & -1 & -6 \\ 0 & -5 & 2 \end{vmatrix}+0\begin{vmatrix} -4 & -3 & -2 \\ 1 & -1 & -6 \\ 0 & -5 & 2 \end{vmatrix}$ Plug in the given values: $\det (A)=1.(-1)[1.(4+15)-3.(-2-30)]+2[-4(4+15)-3(-6-10)]+0+0$ $\det (A)=-115-56$ $\det (A)=-171$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.